6.2

Change of variables formula
The substitution formula for functions of one variable is

$$
\int_{a}^{b} f(x(u)) \frac{d x}{d u} d u=\int_{x(a)}^{x(b)} f(x) d x
$$

Here x is expressed in terms of u so we have a function $x: R->R$ which sends u to an expression $x(u)$, and also a function $f: R$ $\rightarrow R$ defined where the variable is called x.

$$
\mathbb{R} \xrightarrow{x} \mathbb{R} \xrightarrow{f} \mathbb{R}
$$

vanable 4 variable x

On the left we are integrating the composite function $f^{\circ} x$

Because x probably does not change at the same speed as u, we have to include a factor $\mathrm{dx} / \mathrm{du}$

Example:

$$
\begin{array}{ll}
\int_{0}^{2} 2 x e^{x^{2}} d x & \text { Put } u=x^{2} \\
d u=2 x d x
\end{array}
$$

In higher dimensions: the setup is a differentiable map T: D* -> D. We assume T is $1-1$ and $\mathrm{D}=\mathrm{T}\left(\mathrm{D}^{*}\right)$. Then

$$
\iint_{D} f(x, y) d x d y
$$

$$
\left.=\iint_{D^{*}} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v \right\rvert\,
$$ absolute value.

$$
T(u, v)=(x(u, v), y(u, v))
$$

where

$$
\frac{\partial(x, y)}{\partial(u, v)}=\operatorname{det}\left[\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right]
$$

Polar coordinates;
$T: D^{*}->D$ is

$$
T(r, t)=(x(r, t), y(r, t))=(r \cos t, r \sin t) .
$$

$$
\begin{aligned}
\frac{\partial(x, y)}{\partial(r, t)} & =\operatorname{det}\left[\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right] \\
& =r\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=r
\end{aligned}
$$

We get

$$
\iint_{D} f(x, y) d x d y=\iint_{D} f(r, \theta) r d r d \theta
$$

Pre-class Warm-up!!!
Let $T: R \wedge 2->R \wedge 2$ be the mapping $\mathrm{T}(\mathrm{u}, \mathrm{v})=(2 \mathrm{u}, 2 \mathrm{v})$ and write $(\mathrm{x}, \mathrm{y})=\mathrm{T}(\mathrm{u}, \mathrm{v})$. T maps the unit circle D^{*} in the (u, v)-plane to a circle D of radius 2 in the (x, y) plane.

Let $f: R^{\wedge} 2 \rightarrow R$ be a function.
What is the relationship between

$$
\begin{aligned}
& A=\iint_{D} f d x d y \\
& B=\iint_{D^{*}} f_{0} T d u d v
\end{aligned}
$$

Which of the following is true?
a. $A=4 B$

$$
\text { Example; } f(x, y)=1
$$

b. $A=2 B$

$$
\text { Then } f_{0}, T(u, v)=1
$$

$$
A=\text { Area of } D
$$

c. $A=B$

$$
B=\operatorname{Area} \text { of } D^{*}
$$

d. $A=B / 2$

$$
A=4 B
$$

e. $A=B / 4$
$\frac{\partial(x, y)}{\partial(u, v)}=\operatorname{det}\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]=4$
here will be no gur
tomorrow!!!

$$
\iint_{D} f d x d y=\iint_{D^{*}} f_{0} T|4| d u d v
$$

Why does the change of variables formula work?

$\iint_{D^{*}} f(u, v) d u d v$ is approximated $\begin{gathered}\text { Riemann sums }\end{gathered}$

$$
\sum \Delta u \Delta v \underbrace{f\left(u_{i}, v_{i}\right)}_{=} F\left(T\left(u_{n} v_{i}\right)\right)
$$

The image of the little u, v square is approximately a parallelogram of area

$$
\int \rho \frac{\Delta u \Delta v}{} \frac{\partial(x, y)}{\partial(u, v)}
$$

$\iint_{D} f(x, y) d x d y$ is approx.

$$
\sum_{p g m^{\prime} s} f\left(T\left(u, v_{i}\right)\right) \Delta u \Delta v \frac{\partial(x, y)}{\partial(u, v)}
$$

which is approx $\int_{d^{*}} f(u, v) \frac{\partial(x, y)}{\partial(a, y)} d u d v$

Polar coordinates

$$
\iint f(x, y) d x d y=\iint f(r, \theta) r d r d \theta
$$

This is explained by:
Area of $T\left(\Delta_{r}-\Delta \theta\right.$ square $)$

$$
\simeq r \Delta \theta \cdot \Delta_{r} .
$$

Example: Find $\iint_{D} x^{2} y d x d y$
where D is the upper half of the unit disk

In polar words $0 \leqslant r \leqslant 1$

$$
\begin{aligned}
& 0 \leq \theta \leq \pi \\
& \iint_{D} x^{2} y d x d y=\int_{0}^{\pi} \int_{0}^{1}(r \cos \theta)^{2}(r \sin \theta) r d r d \theta \\
& \quad=\int_{0}^{\pi} \int_{0}^{1} r^{4} \cos ^{2} \theta \sin \theta d r d \theta=\frac{2}{15}
\end{aligned}
$$

Example. Use the transformation $T(u, v)=((u+v) / 2,(u-v) / 2))$ to find

$$
\iint_{D}(x+y)^{2} d A
$$

Where D is the diamond

$$
\begin{aligned}
& \frac{\partial(x, y)}{\partial(u, v)}=\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right] \\
& \operatorname{det}=-\frac{1}{2}
\end{aligned}
$$

$$
\text { so } u=x+y \quad v=x-y
$$

$$
T((1,1))=(1,0) \quad T((1,-1)=(0,1)
$$

$$
\iint_{D}(x+y)^{2} d A=\int_{-1}^{1} \int_{-1}^{1} u^{2}\left|-\frac{1}{2}\right| d u d v
$$

Change of variables for cylindrical coordinates

$$
\begin{aligned}
& x=r \cos \theta \quad y=r \sin \theta \quad z=z \\
& \begin{array}{l}
\frac{\partial(x, y, z)}{\partial(r \theta, z)}=\operatorname{det}\left[\begin{array}{ccc}
\cos \theta & -r \sin \theta & 0 \\
\sin \theta & r \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \\
=\operatorname{det}\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right]=r\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\
=r .
\end{array} \\
& d x d y d z=r d r d \theta d z
\end{aligned}
$$

Find the volume bounded by

$$
z=\sqrt{ }\left(x^{\wedge} 2+y^{\wedge} 2\right)
$$

And $x^{\wedge} 2+y^{\wedge} 2+z^{\wedge} 2=1$

Change of variables for spherical coordinates.
$x=\rho \sin \phi \cos \theta \quad y=\rho \sin \phi \sin \theta$
$z=\rho \cos \phi$
$\frac{\partial(x, y, z)}{\partial(\rho, \theta, \phi)}=\left|\begin{array}{ccc}\operatorname{det}\left[\begin{array}{ccc}\sin \phi \cos \theta & -\rho \sin \phi \sin \theta & \rho \cos \phi \cos \theta \\ \cos \phi & \rho \sin \phi \cos \theta & \rho \cos \phi \sin \theta \\ \cos \theta & 0 & -\rho \sin \phi\end{array}\right]\end{array}\right|$

$$
=\mid \cos \phi\left(-\rho^{2} \sin \phi \cos \phi \sin ^{2} \theta-\rho^{2} \sin \phi \cos \phi \cos ^{2} \theta\right)
$$

$$
-\rho \sin \phi\left(\rho \sin ^{2} \phi \cos ^{2} \theta+\rho \sin ^{2} \phi \sin ^{2} \theta\right)
$$

$$
=\left|-p^{2} \sin \phi\left(\cos ^{2} \phi\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+\sin ^{2} \phi\left(\sin ^{2} \theta+\cos ^{2} \theta\right)\right)\right|
$$

$$
\approx\left|-\rho^{2} \sin \phi\right|=\rho^{2} \sin \phi
$$

Thus

$$
d x d y d z=p^{2} \sin \phi d p d \theta d \phi
$$

Find the volume bounded by

$$
z=\sqrt{ }\left(x^{\wedge} 2+y^{\wedge} 2\right)
$$

and $x^{\wedge} 2+y^{\wedge} 2+z^{\wedge} 2=1$

$$
\begin{aligned}
& \text { Volume } \iiint d x d y d z \\
& =\int_{0}^{\pi / 4} \int_{0}^{2 \pi} \int_{0}^{1} \rho^{2} \sin \phi d \rho d \theta d \phi \\
& =\left[\frac{\rho^{3}}{3}\right]_{0}^{1}[\theta]_{0}^{2 \pi}[-\cos \phi]_{0}^{\pi / 4}=\frac{1}{3} \cdot 2 \pi \cdot\left(1-\frac{\sqrt{2}}{2}\right)
\end{aligned}
$$

